
In this module
Advanced Rust syntax

Ownership

In rust there is always a single owner for each stack value

Once the owner goes out of scope any associated values should be cleaned up

Copy types creates copies, all other types are moved

We previously talked about ownership

Moving out of a function

This does not compile because ownership of s1 is moved into calculate_length , meaning it is no

longer available in main afterwards

We can use Clone to create an explicit copy

We can give ownership back by returning the value

What about other options?

We have previously seen this example

1 fn main() {
2 let s1 = String::from("hello");
3 let len = calculate_length(s1);
4 println!("The length of '{}' is {}.", s1, len);
5 }
6 fn calculate_length(s: String) -> usize {
7 s.len()
8 }

` ` ` `

` `

` `

Borrowing
We can make an analogy with real life: if somebody owns something you can borrow it from them, but

eventually you have to give it back

If a value is borrowed, it is not moved and the ownership stays with the original owner

To borrow in rust, we create a reference

1 fn main() {
2 let x = String::from("hello");
3 let len = get_length(&x);
4 println!("{}: {}", x, len);
5 }
6
7 fn get_length(arg: &String) -> usize {
8 arg.len()
9 }

References (immutable)
1 fn main() {
2 let s = String::from("hello");
3 change(&s);
4 println!("{}", s);
5 }
6
7 fn change(some_string: &String) {
8 some_string.push_str(", world");
9 }

 Compiling playground v0.0.1 (/playground)
error[E0596]: cannot borrow `*some_string` as mutable, as it is behind a `&` reference
 --> src/main.rs:8:5
 |
7 | fn change(some_string: &String) {
 | ------- help: consider changing this to be a mutable reference: `&mut String`
8 | some_string.push_str(", world");
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot be borrowed as
mutable

For more information about this error, try `rustc --explain E0596`.
error: could not compile `playground` due to previous error

References (mutable)

A mutable reference can even fully replace the original value

To do this, you can use the dereference operator (*) to modify the value:

1 fn main() {
2 let mut s = String::from("hello");
3 change(&mut s);
4 println!("{}", s);
5 }
6
7 fn change(some_string: &mut String) {
8 some_string.push_str(", world");
9 }

 Compiling playground v0.0.1 (/playground)
 Finished dev [unoptimized + debuginfo] target(s) in 2.55s
 Running `target/debug/playground`
hello, world

` `

1 *some_string = String::from("Goodbye");

Rules for borrowing and references
You may only ever have one mutable reference at the same time

You may have any number of immutable references at the same time as long as there is no mutable

reference

References cannot live longer than their owners

A reference will always at all times point to a valid value

These rules can be checked by the Rust compiler.

Borrowing and memory safety

Rust is memory safe without having to use any runtime background proces such as a garbage collector

But we still get the performance of a language that would normally let you manage memory manually

Combined with the ownership model we can be sure that whole classes of errors cannot occur.

Reference example
1 fn main() {
2 let mut s = String::from("hello");
3 let s1 = &s;
4 let s2 = &s;
5 let s3 = &mut s;
6 println!("{} - {} - {}", s1, s2, s3);
7 }

 Compiling playground v0.0.1 (/playground)
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
 --> src/main.rs:5:14
 |
3 | let s1 = &s;
 | -- immutable borrow occurs here
4 | let s2 = &s;
5 | let s3 = &mut s;
 | ^^^^^^ mutable borrow occurs here
6 | println!("{} - {} - {}", s1, s2, s3);
 | -- immutable borrow later used here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `playground` due to previous error

Returning references
You can return references, but the value borrowed from must exist at least as long

1 fn give_me_a_ref() -> &String {
2 let s = String::from("Hello, world!");
3 &s
4 }

 = help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from

 Compiling playground v0.0.1 (/playground)
error[E0106]: missing lifetime specifier
 --> src/lib.rs:1:23
 |
1 | fn give_me_a_ref() -> &String {
 | ^ expected named lifetime parameter
 |

help: consider using the `'static` lifetime
 |
1 | fn give_me_a_ref() -> &'static String {
 | ~~~~~~~~

For more information about this error, try `rustc --explain E0106`.
error: could not compile `playground` due to previous error

Returning references
You can return references, but the value borrowed from must exist at least as long

1 fn give_me_a_ref(input: &(String, i32)) -> &String {
2 &input.0
3 }

1 fn give_me_a_value() -> String {
2 let s = String::from("Hello, world!");
3 s
4 }

Types redux

Primitives (integers, �oats, booleans, characters)

Compounds (tuples, arrays)

Most of the types we looked at were Copy

Borrowing will make more sense when we look at some more ways we can type our data

We have previously looked at some of the basic types in the Rust typesystem

` `

Structuring data

structs

enums

unions

Rust has two important ways to structure data

Structs

This is an example of a tuple struct. You can access the �elds in the struct the same way as with tuples:

A struct is similar to a tuple, but this time the combined type gets its own name

1 struct ControlPoint(f64, f64, bool);

1 fn main() {
2 let cp = ControlPoint(10.5, 12.3, true);
3 println!("{}", cp.0); // prints 10.5
4 }

Structs

We can add a little more purpose to each �eld

No need to keep our indexing up to date when we add or remove a �eld

Much more common though are structs with named �elds

1 struct ControlPoint {
2 x: f64,
3 y: f64,
4 enabled: bool,
5 }

1 fn main() {
2 let cp = ControlPoint {
3 x: 10.5,
4 y: 12.3,
5 enabled: true,
6 };
7 println!("{}", cp.x); // prints 10.5
8 }

Enumerations

An enumeration (listing) of different variants

Each variant is an alternative value of the enum, you pick a single value to create an instance

One of the more powerful kinds of types in Rust are enumerations

1 enum IpAddressType {
2 Ipv4,
3 Ipv6,
4 }

1 fn main() {
2 let ip_type = IpAddressType::Ipv4;
3 }

Enumerations

This way, the associated data and the variant are bound together

Impossible to create an ipv6 address while only giving a 32 bits integer

Note: an enum always is as large as the largest variant

But enums get more powerful, because each variant can have associated data with it

1 enum IpAddress {
2 Ipv4(u8, u8, u8, u8),
3 Ipv6(u16, u16, u16, u16, u16, u16, u16, u16),
4 }

1 fn main() {
2 let ipv4_home = IpAddress::Ipv4(127, 0, 0, 1);
3 let ipv6_home = IpAddress::Ipv6(0, 0, 0, 0, 0, 0, 0, 1);
4 }

u8IpAddress::Ipv4(127,0,0,1)

IpAddress::Ipv6(0,0,0,0,0,0,0,1)

u8 u8 u8

u16 u16 u16 u16 u16 u16 u16 u16

unused

Pattern matching

a and b introduce local variables within the body of the if that contain the values of those �elds

The underscore (_) can be used to accept any value

To extract data from enums we can use pattern matching using the if let [pattern] = [value]
statement

` `

1 fn accept_ipv4(ip: IpAddress) {
2 if let IpAddress::Ipv4(a, b, _, _) = ip {
3 println!("Accepted, first octet is {} and second is {}", a, b);
4 }
5 }

` ` ` `

` `

Match

Every part of the match is called an arm

A match is exhaustive, which means that all values must be handled by one of the match arms

You can use a catch-all _ arm to catch any remaining cases if there are any left

But pattern matching is very powerful if combined with the match statement

1 fn accept_home(ip: IpAddress) {
2 match ip {
3 IpAddress::Ipv4(127, 0, 0, 1) => {
4 println!("You are home!");
5 },
6 IpAddress::Ipv6(0, 0, 0, 0, 0, 0, 0, 1) => {
7 println!("You are in your new home!");
8 },
9 _ => {
10 println!("You are not home");
11 },
12 }

` `

Match as an expression

The match arms can return a value, but their types have to match

Note how here we do not need a catch all _ arm because all cases have already been handled by the

two arms

The match statement can even be used as an expression

1 fn get_first_byte(ip: IpAddress) {
2 let first_byte = match ip {
3 IpAddress::Ipv4(a, _, _, _) => a,
4 IpAddress::Ipv6(a, _, _, _, _, _, _, _) => a / 256 as u8,
5 };
6 println!("The first byte was: {}", first_byte);
7 }

` `

Generics

We are repeating ourselves here, what if we could write a datastructure for both of these cases?

Generics are much more powerful, but this is all we need for now

Enums become even more powerful if we introduce a little of generics

1 struct PointFloat(f64, f64);
2 struct PointInt(i64, i64);

1 struct Point<T>(T, T);
2
3 fn main() {
4 let float_point: Point<f64> = Point(10.0, 10.0);
5 let int_point: Point<i64> = Point(10, 10);
6 }

Option

Rust does not have null, but you can still de�ne variables that optionally do not have a value

For this you can use the Option<T> enum

A quick look into the basic enums available in the standard library

` `

1 enum Option<T> {
2 Some(T),
3 None,
4 }
5
6 fn main() {
7 let some_int = Option::Some(42);
8 let no_string: Option<String> = Option::None;
9 }

Option

Rust does not have null, but you can still de�ne variables that optionally do not have a value

For this you can use the Option<T> enum

A quick look into the basic enums available in the standard library

` `

1 enum Option<T> {
2 Some(T),
3 None,
4 }
5
6 fn main() {
7 let some_int = Some(42);
8 let no_string: Option<String> = None;
9 }

Error handling
What would we do when there is an error?

1 fn divide(x: i64, y: i64) -> i64 {
2 if y == 0 {
3 // what to do now?
4 } else {
5 x / y
6 }
7 }

Error handling

A panic in Rust is the most basic way to handle errors

A panic error is an all or nothing kind of error

A panic will immediately stop running the current thread/program and instead immediately work to shut

it down, using one of two methods:

Unwinding: going up throught the stack and making sure that each value is cleaned up

Aborting: ignore everything and immediately exit the thread/program

Only use panic in small programs if normal error handling would also exit the program

Avoid using panic in library code or other reusable components

What would we do when there is an error?

1 fn divide(x: i64, y: i64) -> i64 {
2 if y == 0 {
3 panic!("Cannot divide by zero");
4 } else {
5 x / y
6 }
7 }

Error handling
What would we do when there is an error? We could try and use the option enum instead of panicking

1 fn divide(x: i64, y: i64) -> Option<i64> {
2 if y == 0 {
3 None
4 } else {
5 Some(x / y)
6 }
7 }

Result
Another really powerful enum is the result, which is even more useful if we think about error handling

1 enum Result<T, E> {
2 Ok(T),
3 Err(E),
4 }
5
6 enum DivideError {
7 DivisionByZero,
8 CannotDivideOne,
9 }
10
11 fn divide(x: i64, y: i64) -> Result<i64, DivideError> {
12 if x == 1 {
13 Err(DivideError::CannotDivideOne)
14 } else if y == 0 {
15 Err(DivideError::DivisionByZero)
16 } else {
17 Ok(x / y)
18 }
19 }

Handling results

We made the signature of the divide function explicit in how it can fail

The user of the function can now decide what to do, even if it is panicking

Note: just as with Option we never have to use Result::Ok and Result::Err because they

have been made available globally

Now that we have a function that returns a result we have to think about how we handle that error at the
call-site

1 fn div_zero_fails() {
2 match divide(10, 0) {
3 Ok(div) => println!("{}", div),
4 Err(e) => panic!("Could not divide by zero"),
5 }
6 }

` `

` ` ` ` ` `

Handling results

Unwrap checks if the Result/Option is Ok(x) or Some(x) respectively and then return that x ,

otherwise it will panic your program with an error message

Having unwraps all over the place is generally considered a bad practice

Sometimes you can ensure that an error won’t occur, in such cases unwrap can be a good solution

Especially when writing initial prototyping code you will often �nd yourself wanting to write error handling
code later, Rust has a useful utility function to help you for both Option and Result :` ` ` `

1 fn div_zero_fails() {
2 let div = divide(10, 0).unwrap();
3 println!("{}", div);
4 }

` ` ` ` ` `

` `

Handling results

Besides unwrap, there are some other useful utility functions

unwrap_or(val) : If there is an error, use the value given to unwrap_or instead

unwrap_or_default() : Use the default value for that type if there is an error

expect(msg) : Same as unwrap, but instead pass a custom error message

unwrap_or_else(fn) : Same as unwrap_or, but instead call a function that generates a value in case

of an error

Especially when writing initial prototyping code you will often �nd yourself wanting to write error handling
code later, Rust has a useful utility function to help you for both Option and Result :` ` ` `

1 fn div_zero_fails() {
2 let div = divide(10, 0).unwrap_or(-1);
3 println!("{}", div);
4 }

` `

` `

` `

` `

Result and the ? operator

Look how this function changes if we use the ? operator

` `
Results are so common that there is a special operator associated with them, the ? operator` `

1 fn can_fail() -> Result<i64, Error> {
2 let intermediate_result = match divide(10, 0) {
3 Ok(ir) => ir,
4 Err(e) => return Err(e);
5 };
6
7 match divide(intermediate_result, 0) {
8 Ok(sec) => Ok(sec * 2),
9 Err(e) => Err(e),
10 }
11 }

` `

1 fn can_fail() -> Result<i64, Error> {
2 let intermediate_result = divide(10, 0)?;
3 Ok(divide(intermediate_result, 0)? * 2)
4 }

Result and the ? operator

The ? operator does an implicit match, if there is an error, that error is then immediately returned and

the function returns early

If the result is Ok() then the value is extracted and we can continue right away

` `
1 fn can_fail() -> Result<i64, Error> {
2 let intermediate_result = divide(10, 0)?;
3 Ok(divide(intermediate_result, 0)? * 2)
4 }

` `

` `

Intermission: Impl blocks

The syntax x.y() looks similar to how we accessed a �eld in a struct

We can de�ne functions on our types using impl blocks

Impl blocks can be de�ned on any type, not just structs (with some limitations)

In the past few slides we saw a syntax which wasn’t explained before:

3 let unwrapped = x.unwrap();

1 fn main() {
2 let x = Some(42);

4 println!("{}", unwrapped);
5 }

` `

Intermission: Impl blocks
1 enum IpAddress {
2 Ipv4(u8, u8, u8, u8),
3 Ipv6(u16, u16, u16, u16, u16, u16, u16, u16),
4 }
5
6 impl IpAddress {
7 fn as_u32(&self) -> Option<u32> {
8 match self {
9 IpAddress::Ipv4(a, b, c, d) => a << 24 + b << 16 + c << 8 + d
10 _ => None,_
11 }
12 }
13 }
14
15 fn main() {
16 let addr = IpAddress::Ipv4(127, 0, 0, 1);
17 println!("{:?}", addr.as_u32());
18 }

Intermission: Impl blocks, self and Self
The self parameter de�nes how the method can be used.

The Self type is a shorthand for the type on which the current implementation is speci�ed.

` `

` `

1 struct Foo(i32);
2
3 impl Foo {
4 fn consume(self) -> Self {
5 Self(self.0 + 1)
6 }
7
8 fn borrow(&self) -> &i32 {
9 &self.0
10 }
11
12 fn borrow_mut(&mut self) -> &mut i32 {
13 &mut self.0
14 }
15
16 fn new() -> Self {
17 Self(0)
18 }
19 }

Intermission: Impl blocks, the self parameter

The self parameter is always the �rst and it always has the type on which it was de�ned

We never specify the type of the self parameter

We can optionally prepend & or &mut to self to indicate that we take a value by reference

Absence of a self parameter means that the function is an associated function instead

The self parameter is called the receiver.

` ` ` `

1 fn main () {
2 let mut f = Foo::new();
3 println!("{}", f.borrow());
4 *f.borrow_mut() = 10;
5 let g = f.consume();
6 println!("{}", g.borrow());
7 }

Vec: storing more of the same

Compare this to the array we previously saw, which has a �xed size

The vector is an array that can grow

1 fn main() {
2 let arr = [1, 2];
3 println!("{:?}", arr);
4
5 let mut nums = Vec::new();
6 nums.push(1);
7 nums.push(2);
8 println!("{:?}", nums);
9 }

Vec
Vec is such a common type that there is an easy way to initialize it with values that looks similar to arrays

1 fn main() {
2 let mut nums = vec![1, 2];
3 nums.push(3);
4 println!("{:?}", nums);
5 }

Vec: memory layout
How can a vector grow? Things on the stack need to be of a �xed size

data

capacity

len

element 0

element 1

...

cap n+1

...

cap m

stack heap

Vec<T>{
element n

Put it in a box

Boxing something is the way to create data that is stored on the heap

A box uniquely owns that data, there is no one else that also owns the same data

Even if the type inside the box is Copy , the box itself is not, move semantics apply to a box.

That pointer from the stack to the heap, how do we create such a thing?

` `

1 fn main() {
2 // put an integer on the heap
3 let boxed_int = Box::new(10);
4 }

ptr T

stack heap

Box<T>

Boxing

When something is too large to move around

We need something that is sized dynamically

For writing recursive datastructures

There are several reasons to box a variable on the heap

1 struct Node {
2 data: Vec<u8>,
3 parent: Node,
4 }

Boxing

When something is too large to move around

We need something that is sized dynamically

For writing recursive datastructures

There are several reasons to box a variable on the heap

1 struct Node {
2 data: Vec<u8>,
3 parent: Box<Node>,
4 }

Vectors and arrays
What if we wanted to write a sum function, we could de�ne one for arrays of a speci�c size:

1 fn sum(data: &[i64; 10]) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }

Vectors and arrays
Or one for just vectors:

1 fn sum(data: &Vec<i64>) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }

Slices

A slice is a dynamically sized view into a contiguous sequence

Contiguous: elements are layed out in memory such that they are evenly spaced

Dynamically sized: the size of the slice is not stored in the type, but is determined at runtime

View: a slice is never an owned datastructure

Slices are typed as [T] , where T is the type of the elements in the slice

But what if we want something to work on arrays of any size? Or what if we want to support summing up
only parts of a vector?

` ` ` `

Slices
1 fn sum(data: [i64]) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }
8
9 fn main() {
10 let data = vec![10, 11, 12, 13, 14];
11 println!("{}", sum(data));
12 }

1 Compiling playground v0.0.1 (/playground)
2 error[E0277]: the size for values of type `[i64]` cannot be known at compilation time
3 --> src/main.rs:1:8
4 |
5 1 | fn sum(data: [i64]) -> i64 {
6 | ^^^^ doesn't have a size known at compile-time
7 |
8 = help: the trait `Sized` is not implemented for `[i64]`
9 help: function arguments must have a statically known size, borrowed types always have a known size

Slices
1 fn sum(data: &[i64]) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }
8
9 fn main() {
10 let data = vec![10, 11, 12, 13, 14];
11 println!("{}", sum(&data));
12 }

1 Compiling playground v0.0.1 (/playground)
2 Finished dev [unoptimized + debuginfo] target(s) in 0.89s
3 Running `target/debug/playground`
4 60

Slices
[T] is an incomplete type: we need to know how many T there are

Types that have a known compile time size implement the Sized trait, raw slices do not implement it

Slices must always be behind a reference type, i.e. &[T] and &mut [T] (but also Box<[T]> etc)

The length of the slice is always stored together with the reference

` ` ` `

` `

` ` ` ` ` `

ptr T

T

T

...

T

ptr

len

&T

&[T]

Creating slices

Using a borrow

We can borrow from arrays and vectors to create a slice of their entire contents

Using ranges

We can use ranges to create a slice from parts of a vector or array

Using a literal (for immutable slices only)

We can have memory statically available from our compiled binary

Because we cannot create slices out of thin air, they have to be located somewhere. There are three
possible ways to create slices:

Creating slices
Using a borrow

1 fn sum(data: &[i32]) -> i32 { /* ... */ }
2
3 fn main() {
4 let v = vec![1, 2, 3, 4, 5, 6];
5 let total = sum(&v);
6 println!("{}", total);
7 }

Creating slices

The range start..end contains all values x with start <= x < end .

Note: you can also use ranges on their own, for example in a for loop:

Using ranges

1 fn sum(data: &[i32]) -> i32 { /* ... */ }
2
3 fn main() {
4 let v = vec![0, 1, 2, 3, 4, 5, 6];
5 let all = sum(&v[..]);
6 let except_first = sum(&v[1..]);
7 let except_last = sum(&v[..5]);
8 let except_ends = sum(&v[1..5]);
9 }

` ` ` ` ` `

1 fn main() {
2 for i in 0..10 {
3 println!("{}", i);
4 }
5 }

Creating slices

Interestingly get_v_arr works, even though the literal looks like it would only exist temporarily

Literals actually exist during the entire lifetime of the program

&'static here is used to indicate that this slice will exist the entire lifetime of the program

From a literal

3 fn get_v_arr() -> &'static [i32] {
4 &[0, 1, 2, 3, 4, 5, 6]
5 }

12 let all = sum(get_v_arr());

1 fn sum(data: &[i32]) -> i32 { /* ... */ }
2

6
7 fn get_v_vec() -> &'static [i32] {
8 &vec![0, 1, 2, 3, 4, 5, 6]
9 }
10
11 fn main() {

13 let all_vec = sum(get_v_vec());
14 }

` `

` `

Strings

Strings are used to represent text

In Rust they are always valid UTF-8

Their data is stored on the heap

A String is almost the same as Vec<u8> with extra checks to prevent creating invalid text

We have already seen the String type being used before, but let’s dive a little deeper` `

` `

Strings
Let’s take a look at some strings

1 fn main() {
2 let s = String::from("Hello world\nSee you!");
3 println!("{:?}", s.split_once(" "));
4 println!("{}", s.len());
5 println!("{:?}", s.starts_with("Hello"));
6 println!("{}", s.to_uppercase());
7 for line in s.lines() {
8 println!("{}", line);
9 }
10 }

String literals
We have already seen string literals being used while constructing a string. The string literal is what
arrays are to vectors

1 fn main() {
2 let s1 = "Hello world";
3 let s2 = String::from("Hello world");
4 }

String literals

s1 is actually a slice, a string slice

We have already seen string literals being used while constructing a string. The string literal is what
arrays are to vectors

1 fn main() {
2 let s1: &'static str = "Hello world";
3 let s2: String = String::from("Hello world");
4 }

` `

String literals

s1 is actually a slice, a string slice

We have already seen string literals being used while constructing a string. The string literal is what
arrays are to vectors

1 fn main() {
2 let s1: &str = "Hello world";
3 let s2: String = String::from("Hello world");
4 }

` `

str - the string slice

Not [u8] : not every sequence of bytes is valid UTF-8

Not [char] : we could not create a slice from a string since it is stored as UTF-8 encoded bytes

We introduce a new special kind of slice: str

For string slices we do not use brackets!

It should be possible to have a reference to part of a string. But what is it?

` `

` `

` `

str, String, array, Vec
Static Dynamic Borrowed

[T; N] Vec<T> &[T]

- String &str

There is no static variant of str

This would only be useful if we wanted strings of an extact length

But just like we had the static slice literals, we can use &'static str literals for that instead!

` ` ` ` ` `

` ` ` `

` `

String or str
When do we use String and when do we use str?

1 fn string_len(data: &String) -> usize {
2 data.len()
3 }

String or str

Prefer &str over String whenever possible

If you need to mutate a string you might try &mut str , but you cannot change a slice’s length

Use String or &mut String if you need to fully mutate the string

When do we use String and when do we use str?

1 fn string_len(data: &str) -> usize {
2 data.len()
3 }

` ` ` `

` `

` ` ` `

Summary
Rust uses ownership and borrowing to give memory safety without a garbage collector

Rust has structs and enums to structure your data

Use panic! , Result and Option for handling errors and missing values

De�ne methods and associated functions with impl blocks

Use Vec<T> for growable array storage

Use Box<T> to put something on the heap

Use slices whenever possible instead of owned Vec and String types

` ` ` ` ` `

` `

` `

Exercises
We’ll be doing the A2 excercises, see https://101-rs.tweede.golf

To keep in contact we will use Discord: https://discord.gg/pzv92cAZ

Join one of the voice channels and ask us to join you in the #lab-sessions channel when you need

help!

Don’t hesitate to ask when you get stuck!

` `

https://101-rs.tweede.golf/A2-advanced-intro/mod.html
https://discord.gg/pzv92cAZ

