Rust programming

Module B: Application programming

Last time...

= Generic code
= Traits
®» Trait generics & associated types

m |ifetime annotations

Any questions?

In this module

Learn how to use Rust for writing high quality applications

Learning objectives

= Work with "crate dependencies
= Create your own crate with a nice API

» Test and benchmark your code

During tutorial:

= Divide your code into logical parts with modules

= Use common crates

= Set up your own Rust application and library

Module B

Application programming

Content overview

= Working with ‘crate's
= API| guidelines

m Testing and benchmarking

Creating Rust projects

Cargo
Most daily usage of Rust will involve using cargo in one way or another.

Some of the more common tasks are:

= Creating new projects

= Managing dependencies

= Building projects

m Executing the resulting binaries
= Running tests and benchmarks

= Generating and viewing local documentation

Cargo configuration

Cargo is managed through the Cargo.toml configuration file. Tomlis an easy to read configuration file
fairly similar to ini files.

[package]

name = "example"
version = "0.1.0"
edition = "2021"

[dependencies]
serde = "1.0"

N O o BN

Adding dependencies

You can add dependencies to Cargo.toml in multiple ways

Add a line in cargo.toml

[package]

name = "example"
"0.1.0"
"2021"

version

edition
[dependencies]

serde = "1.0"
itertools = "0.10"

Use cargo add

cargo add itertools

Dependencies? Crates!

The crate is the compilation unit for Rust

= Binary crates:

» Resultin a compiled binary program that you can execute.

= Binaries have a main function as entrypoint of the program
= Library crates:

» define functionality that can be used by other crates.

= No specific ' main function

Each crate in Rust has a root file. For binary crates this typically is main.rs , but for libraries this typically
is lib.rs .

Using a crate
Crates included in Cargo.toml can be:

= imported with a use”

m qualified directly using path separator ":: "~

1 // Import an item from this crate, called "my_first_app’
2 use my_first_app::add;

3 // Import an item from the “tracing dependency
4 use tracing::info;

5

6 fn main() {

7 // Use qualified path

8 tracing_subscriber::fmt()

9 .with_max_level(tracing::Level: :DEBUG)
10 .init();

11

12 let x = 4;

13 let y = 6;

14

15 // Use imported items

16 let z = add(x, y);

17 info!("Let me just add {x} and {y}: {z}")

=
o)
o

Other dependency sources

= | ocal

m Git
$ cat Cargo.toml
[dependencies]

my_local_dependency = { path = "../path/to/my_local_dependency" }
my_git_dependency = { git = "<Git SSH or HTTPS url>", rev="<commit hash or tag>", branch = "<branch>" }

= Private crate registries are WIP

Creating a nice API

Rust APl guidelines

= Defined by Rust project

» Checklist available (Link in exercises)

Rust APl Guidelines Checklist

3 Nammg (crate aligns with Rust naming conventions)
B Casing conforms to RFC 430 ()
> M Ad-hoc conversions follow as_, to_, into_ conventions (
o [Getter names follow Rust convention ()
> M Methods on collections that produce iterators follow iter, iter_mut, into_iter (
)
> @ Iterator type names match the methods that produce them (
> M Feature names are free of placeholder words ()
> M Names use a consistent word order ()
. Interoperablllty (crate interacts nicely with other library functionality)
M Types eagerly implement common traits ()
= Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Display, Default
Conversions use the standard traits From, AsRef, AsMut ()
Collections implement FromIterator and Extend ()

Data structures implement Serde's Serialize, Deserialize (

Types are send and sync where possible ()

Error types are meaningful and well-behaved ()

Binary number types provide Hex, Octal, Binary formatting (
Generic reader/writer functions take R: Read and w: write by value (

Read the checklist, use it!

https://rust-lang.github.io/api-guidelines/checklist.html

General recommendations
Make your API

= Unsurprising
= Flexible

= Obvious

Next up: Some low-hanging fruits

Make your API

Unsurprising

Naming your methods

pub struct S {
first: First,
second: Second,

}
impl S {
pub fn first(&self) -> &First {
§self.first
}
pub fn first _mut(&mut self) -> &mut First {
gmut self.first
}
}
Other example: conversion methods "as_ ", to_

= Runtime cost

= Owned < borrowed

°, 'into_ ", name depends on:

Implement/derive common
traits

As long as it makes sense public types should

implement:
= Copy
= Clone”
= "Hash
[| \Eq\
. . = Debug
"= "PartialkEq g
"= Display
= Ord
= Default

® PartialOrd
m ‘serde::Serialize

m ‘serde::Deserialize’

Make your API

Flexible

Use generics

pub fn add(x: u32, y: u32) -> u32 {
X +y

/// Adds two values that implement the “Add’ trait,

/// returning the specified output

pub fn add_generic<0, T: std::ops::Add<Output = 0>>(x: T, y: T) -> 0 {
X +y

O 00 N O U1 & W N B

Accept borrowed data if possible

» User decides whether calling function should own the data
= Avoids unnecessary moves

= Exception: non-big array Copy types

pub struct LargeStruct {
data: [u8; 4096],
}

pub fn manipulate_large_struct(mut large: LargeStruct) -> LargeStruct {
todo! ()
}

pub fn manipulate_large_struct_borrowed(large: &mut LargeStruct) {
todo!()
}

Make your API

Obvious

Write Rustdoc

m Use 3 forward-slashes to start a doc comment

® You can add code examples, too

pub struct MyDocumentedStruct

pub field: u32

To open docs in your browser:

$ cargo doc --open

Struct ex_b::MyDocumentedStruct E

pub struct MyDocumentedStruct {
pub field: u32,

Use three forward-slashes start a doc comment.

You can add code examples, too:

let my_struct = MyDocumentedStruct {
field: 1,

s

println! ("{:?}", my_struct.field);

Fields

field: u32
A field with data

Include examples

Create examples to show users how to use your library

O 00 N O U1 & W N B

[S = W Y
W N R o

$ tree

— Cargo.lock

— Cargo.toml

— examples

| L— say_hello.rs

L— src
L— lib.rs

$ cargo run --example say_hello

Compiling my_app v0.1.0 (/home/henkdieter/tg/edu/my_app)

Finished dev [unoptimized + debuginfo] target(s) in 0.30s
Running “target/debug/examples/say_hello”

Hello, henkdieter!

Use semantic typing (1)

Make the type system work for you!

let page = load_page("https://101-rs.tweede.golf");
let crab = load_page("0");
h

1

2 fn load_page(url: &str) -> String {
3 todo!("Fetch");

4}

5

6 fn main() {

7

8

9

‘§str " Is not restrictive enough: not all ‘&str represent correct URLs

Use semantic typing (2)

1 struct Url<'u> {

2 url: §'u str,

3 1

4 1 Compiling playground v0.0.1 (/playground)
5 impl<'u> Url<'u> { 2 Finished dev [unoptimized + debuginfo]
6 fn new(url: &'u str) -> Self { target(s) in 2.90s

7 if Ilvalid(url) { 3 Running “target/debug/playground’

8 panic!("URL invalid: {}", url); 4 thread 'main' panicked at 'URL invalid: 0°',
9 } src/main.rs:11:7

10 Self { url } 5 note: run with “RUST_BACKTRACE=1" environment
11 } variable to display a backtrace

12 }

13 = Clearintent

14 fn load_page(remote: Url) -> String { . . .

15 todo!("load it"); ®» |nput validation: security!

16 }

17 Use the ‘url crate

18 fn main() { T

19 let content = load_page(Url::new("0"));
20 }
21
22 fn valid(url: &str) -> bool {
23 url != "p"

24 }

https://lib.rs/url

Use Clippy and Rustfmt for all your projects!

$ cargo clippy
$ cargo fmt

Testing your crate

Testing methods

= Testing for correctness
= Unit tests
» |ntegration tests

m Testing for performance

= Benchmarks

Unit tests

= Tests a single function or method
= Live in child module

m Can test private code
To run:

$ cargo test

[...]

running 2 tests

test tests::test_swap_items ... ok

test tests::test_swap_oob - should panic ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

[..]

Rust compiles your test code into binary using a test harness that itself has a CLI:

$ cargo test -- --nocapture

O 00 N O U1 & W N B

N NN NNNNNONNRRRRRR R R R R
© N O U S WNREPROWOOWLDNOO U SWN R

/// Swaps two values at the “first and “second’ indices of the slice

fn slice_swap_items(slice: &mut [u32], first: usize, second:

let tmp = slice[second];
slice[second] = slice[first];
slice[first] = tmp;

/// This module is only compiled in “test” configuration
#lcfg(test)]
mod tests {

use crate::slice_swap_items;

// Mark function as test

#[ltest]

fn test_swap_items() {
let mut array = [0, 1, 2, 3, 4, 5];
slice_swap_items(&mut array[..], 1, &);
assert_eq!(array, [0, 4, 2, 3, 1, 5]);

#[test]

// This should panic

#[should_panic]

fn test_swap_oob() {
let mut array = [0, 1, 2, 3, 4, 5];
slice_swap_items(&mut array[..], 1, 6);

usize) {

Integration tests

m Tests crate public API
= Run with "cargo test

. Defined in tests folder:
$ tree

— Cargo.toml

— examples

| L— my_example.rs
— src

| |— another_mod

| | L— mod.rs

| — bin

| | “—— my_app.rs
| |— lib.rs

| F— main.rs

|

L— some_mod.rs

L— integration_test.rs

Tests in your documentation

You can even use examples in your documentation as tests

1 /// Calculates fibonacci number n
2 ///

3 /// # Examples

4 ///

5 /77

6 /// # use example::fib;

7 /// assert_eq!(fib(2), 1);

8 /// assert_eq!(fib(5), 5);

9 /// assert_eq!(fib(55), 55);

i ///

11 pub fn fib(n: u64) -> ubs4 {

12 if n <=1 {

13 n

14 } else {

15 fib(n - 1) + fib(n - 2)
16 }

17 }

1 cargo test --doc

Benchmarks

» Test performance of code (vs. correctness)

= Runs a tests many times, yield average execution time
Good benchmarking is Hard

= Beware of optimizations
m Beware of initialization overhead

» Be sure your benchmark is representative

More in exercises

Summary

Set up your own Rust application and library

= Using cargo new

Divide your code into logical parts with modules
= Modules

= Workspaces

Create a nice API

= Unsurprising, Flexible, Obvious

= API guidelines

Test and benchmark your code

= Unit tests, integration tests, benchmarks

Tutorial time!

= Exercises A3 recap

m Exercises Bin 101-rs.tweede.golf

= Live code on ex B1 and first part of B2

Don’'t forget to git pull !

END

