
Rust programming
Module C: concurrency and parallelism

Who am i?
I’m Folkert

work on Network Time Protocol and other

systems programming things

work on the Roc compiler (and other low-level

shenanigans)

Last time…
Cargo and dependencies

Creating a nice API

Testing and benchmarking

Setting up your own project

Learning objectives

parallelize a program with Rayon

work with threads in rust

reason about exclusive access

implement a basic Mutex

after this lecture + exercises, you can:

Concurrency vs. Parallelism
Concurrency Parallelism

Interleaves work Parallelizes work

1 or more cores 2 or more cores

Waiting for events Waiting for computation

Parallelism with Rayon
solving Pleasantly Parallel Problems

TF–IDF

term frequency–inverse document frequency

TF: "how often does a word occur in a particular document"

IDF: "how rare is the word across all documents"

Problem:

how do we aggregate the results?

An algorithm for searching in a big collection of text documents

TF–IDF in Rayon
1 use std::collections::HashMap;
2 use rayon::prelude::*;
3
4 fn document_frequency(documents: &[&str]) -> HashMap<&str, usize> {
5 documents
6 .par_iter()
7 .map(|document| term_occurence(document))
8 .reduce(HashMap::default, combine_occurences);
9 }
10
11 /// Map each word in the document to the value 1
12 fn term_occurence(document: &str) -> HashMap<&str, usize> {
13 todo!()
14 }
15
16 /// combine the counts from maps a and b.
17 fn combine_occurences<'a>(
18 a: HashMap<&'a str, usize>,
19 b: HashMap<&'a str, usize>,
20) -> HashMap<&'a str, usize> {
21 todo!()
22 }

Combining results

our operation is associative a • (b • c) = (a • b) • c

our operation has a neutral value HashMap::default() : 0 • x = x • 0 = x

therefore we can split the computation a • b • c • d = (0 • a • b) • (0 • c • d)

an associative operation with a neutral value is called a "monoid"

this idea means each thread can start accumulating values

The combine_documents function has several useful properties` `

` `

` ` ` `

` `

1 // for each word, how often it occurs across all documents
2 documents
3 .par_iter()
4 .map(|document| count_words(document))
5 .reduce(HashMap::default, combine_documents);

Intermezzo: Closures
Closures are anonymous (unnamed) functions

they can capture ("close over") values in their scope

they are first-class values

very useful when working with iterators, Option and Result .

1 fn foo() -> impl Fn(i64, i64) -> i64 {
2 z = 42;
3 |x, y| x + y + z
4 }
5
6 fn bar() -> i64 {
7 // construct the closure
8 let f = foo();
9
10 // evaluate the closure
11 f(1, 2)
12 }

` ` ` `

1 let evens: Vec<_> = some_iterator.filter(|x| x % 2 == 0).collect();

So far
Closures are unnamed inline functions

Rayon makes data-parallel programming in rust extremely convenient

Fearless concurrency
thread-based concurrency in rust

Fearless concurrency

A process can spawn multiple threads of execution. These run concurrently (and may run in parallel)

Question: what is the output of this program?

1 use std::thread;
2
3 fn main() {
4 thread::spawn(f);
5 thread::spawn(f);
6
7 println!("Hello from the main thread.");
8 }
9
10 fn f() {
11 println!("Hello from another thread!");
12
13 let id = thread::current().id();
14 println!("This is my thread id: {id:?}");
15 }

Expected output

or

maybe

1 Hello from another thread!
2 This is my thread id: ThreadId(411)
3 Hello from another thread!
4 This is my thread id: ThreadId(412)
5 Hello from the main thread.

1 Hello from another thread!
2 Hello from another thread!
3 This is my thread id: ThreadId(411)
4 This is my thread id: ThreadId(412)
5 Hello from the main thread.

Expected output

The process exits when the main thread is done!

.join() can be used to block the main thread until the child is done

.join() turns a panic in the thread into an Err

but most likely

1 Hello from the main thread.

` `

1 fn main() {
2 let t1 = thread::spawn(f);
3 let t2 = thread::spawn(f);
4
5 println!("Hello from the main thread.");
6
7 t1.join().unwrap();
8 t2.join().unwrap();
9 }

` ` ` `

Thread lifetime
a more typical example

numbers must be move d into the closure!

1 let numbers = Vec::from_iter(0..=1000);
2
3 let t = thread::spawn(move || {
4 let len = numbers.len();
5 let sum = numbers.iter().sum::<usize>();
6 sum / len
7 });
8
9 let average = t.join().unwrap();
10
11 println!("average: {average}");

` ` ` `

Thread lifetime
otherwise numbers might be dropped while the thread is still using it!` `

1 let numbers = Vec::from_iter(0..=1000);
2
3 let t = thread::spawn(|| {
4 let len = numbers.len();
5 let sum = numbers.iter().sum::<usize>();
6 sum / len
7 });
8
9 drop(numbers); // compile error: would create a dangling reference
10
11 let average = t.join().unwrap();
12
13 println!("average: {average}");

Thread lifetime: make it known

explicitly bound the lifetime with a scope

threads are always joined at the end of that scope

makes immutable references just work

1 let numbers = Vec::from_iter(0..=1000);
2
3 let average = thread::scope(|spawner| {
4 spawner.spawn(|| {
5 let len = numbers.len();
6 let sum = numbers.iter().sum::<usize>();
7 sum / len
8 }).join().unwrap()
9 });
10
11 println!("average: {average:?}");

but mutable borrowing rules still apply:

1 let mut count = 0;
2 let counter = &mut count;
3
4 std::thread::scope(|s| {
5 s.spawn(|| { *counter = *counter + 1; });
6 s.spawn(|| { *counter = *counter + 1; });
7 });

1 error[E0499]: cannot borrow `*counter` as mutable more than once at a time
2 6 | thread::scope(|s| {
3 | - has type `&'1 Scope<'1, '_>`
4 7 | s.spawn(|| { *counter = *counter + 1; });
5 | --
6 | | | |
7 | | | first borrow occurs due to use of `*counter` in closure
8 | | first mutable borrow occurs here
9 | argument requires that `*counter` is borrowed for `'1`
10 8 | s.spawn(|| { *counter = *counter + 1; });
11 | ^^ -------- second borrow occurs due to use of `*counter` in closure
12 | |
13 | second mutable borrow occurs here

Race Conditions
if multiple mutable borrows were allowed, this could happen …

Fearless concurrency

borrowing rules prevent data races & deadlocks

but also any shared mutable state between threads

many correct, useful programs are disallowed!

Re-defining references
&T : (possibly) shared reference

&mut T : exclusive reference

for safe mutation, we need exclusive access, which we can get in multiple ways:

we have an exclusive reference to the value

we own the value (we can exclusively borrow from ourselves)

access is inherently exclusive (atomic operations)

` `

` `

Atomics
atomic operations are indivisible, but relatively expensive

no risk of a race condition: another thread cannot read the value while an atomic operation is ongoing

1 use std::sync::atomic::{AtomicU32, Ordering};
2
3 let foo = AtomicU32::new(0);
4 assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
5 assert_eq!(foo.load(Ordering::SeqCst), 10);

1 pub fn fetch_add(&self, val: u32, order: Ordering) -> u32

Mutual Exclusion
Mutex allows mutation of a T through a shared &Mutex<T> reference

threads lock the mutex, but there is no unlock ?!

` ` ` ` ` `

1 use std::sync::Mutex;
2 use std::thread;
3
4 fn main() {
5 let n = Mutex::new(String::from("foo"));
6 thread::scope(|s| {
7
8 s.spawn(|| { n.lock().unwrap().push_str("bar"); });
9
10 s.spawn(|| { n.lock().unwrap().push_str("baz"); });
11
12 });
13
14 println!("{}", n.into_inner().unwrap());
15 }

` `

Sharing ownership between threads

Acquires a mutex, blocking the current thread until it is able to do so

Returns a PoisonError if a thread panicked while holding the lock

Returns a MutexGuard , proof to the type checker that we hold the lock

MutexGuard<'a, T> implements DerefMut<Target = T> , so we can use it like a mutable

reference

dropping the MutexGuard unlocks the mutex

1 impl<T> Mutex<T> {
2 pub fn lock<'a>(&'a self) -> LockResult<MutexGuard<'a, T>> {
3 ...
4 }
5 }

` `

` `

` ` ` `

1 impl<'a, T> DerefMut for MutexGuard<'a, T> {
2 fn deref_mut(&mut self) -> &mut T {
3 // ...
4 }
5 }

` `

Moving ownership between threads
Some values should never be shared or moved between threads

The Send and Sync marker traits enforce this:

Send : A type is Send if it can be sent to another thread. In other words, if ownership of a value of that

type can be transferred to another thread

Sync : A type is Sync if it can be shared with another thread. In other words, a type T is Sync if and

only if a shared reference to that type &T is Send

` ` ` `

1 pub unsafe auto trait Send { /* no method */ }
2 pub unsafe auto trait Sync { /* no method */ }

` `

` `

` `

Send
A type is Send if it can be sent to another thread. In other words, if ownership of a value of that type

can be transferred to another thread

On certain OS’s, only the thread that locked a mutex may unlock it again!

` `

1 impl<T: ?Sized> !Send for MutexGuard<'_, T>
2 impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T>

MPSC: many producer single consumer

where the Receiver is:

1 fn main() {
2 let (tx, rx) = std::sync::mpsc::channel();
3
4 std::thread::scope(|s| {
5 for (i, tx) in std::iter::repeat(tx).take(10).enumerate() {
6 s.spawn(move || { tx.send(i).unwrap(); });
7 }
8
9 s.spawn(move || {
10 while let Ok(msg) = rx.recv() {
11 println!("{msg}");
12 }
13 });
14 });
15 }

` `

1 impl<T: Send> Send for Receiver<T>
2 impl<T> !Sync for Receiver<T>

Further reading

read for free at https://marabos.nl/atomics/

https://marabos.nl/atomics/

Summary
Rayon makes parallel computation easy

Scoped threads allow borrowing into threads

Mutation requires exclusive access

Some data structures guarantee exclusive access (even through a shared reference)

The borrow checker, Send and Sync prevent many common problems` ` ` `

