
Rust programming
Module F: safe and unsafe rust

Unsafe: Learning objectives
when to reach for unsafe code

reason about undefined behavior

familiarity with raw pointers in rust

practical experience with raw pointers, C strings and untagged unions

` `

Content overview
Why is unsafe needed?

Undefined behavior and optimizations

Break

common types in unsafe code

examples of unsafe usage

Rust guarantees that references are valid

the address is not NULL

the address is well-aligned for type T

it points into memory belonging to the process

These guarantees make rust memory safe

for any &T or &mut T` ` ` `

` `

` `

The borrow checker

We want a 100% guarantee that when the compiler says 👍 that really means our program is correct

An analysis that is wrong in 1 out of 100 cases is worthless

The borrow + type checker ensures that these conditions are met

The borrow checker is conservative
"if it is not a hell yes, it’s a no"

fail-proof borrow checker

all programs that my borrow checker accepts are memory safe!

1 fn borrow_checker<P>(program: P) -> bool {
2 false
3 }

Hence
There are (many) correct programs that the rust borrow checker does not accept

Hence

interacting with other languages (FFI)

interacting with the OS/hardware

optimization

There are (many) useful programs that the rust borrow checker does not accept

Unsafe, morally

The type and borrow checker are still in fully effect. But we can use types like raw pointers on which the
conditions that the type/borrow checker places are less strict.

In rust "unsafe" means "I, the programmer, am responsible for checking the correctness of this code"

Unsafe in code
unsafe blocks: "programmer must check the rules"

unsafe functions: "programmer must check the preconditions"

unsafe impl: "programmer must check impl is valid"

1 // BAD!
2 let reference: &u8 = unsafe {
3 let ptr = 0usize as *const u8;
4
5 &*ptr
6 };

1 unsafe fn foobar() {
2 ...
3 }

1 unsafe impl Send for MyType {}

Undefined Behavior & Optimizations

unsafe fn : to call this function, the programmer has to check the preconditions

returns "never", the type of an infinite loop (diverging computation)

1 // std::hint::unreachable_unchecked
2 pub const unsafe fn unreachable_unchecked() -> !

` `

Undefined Behavior & Optimizations

that print is unreachable if the rest of the branch is unreachable

1 if expensive_pure_computation() == 0 {
2 println!("hello there");
3 unsafe { std::hint::unreachable_unchecked() }
4 } else {
5 different_computation()
6 }

Undefined Behavior & Optimizations

actually the whole branch is unreachable

1 if expensive_pure_computation() == 0 {
2 unsafe { std::hint::unreachable_unchecked() }
3 } else {
4 different_computation()
5 }

Undefined Behavior & Optimizations

actually that whole condition does not need to be computed

1 expensive_pure_computation() == 0;
2 different_computation()

Undefined Behavior & Optimizations

becomes just

but if the condition turns out to be reachable, behavior is confusing

1 if expensive_pure_computation() == 0 {
2 println!("hello there");
3 unsafe { std::hint::unreachable_unchecked() }
4 } else {
5 different_computation()
6 }

1 different_computation()

Undefined Behavior & Optimizations
misusing unreachable_unchecked is very explicit. There are many more subtle ways to introduce UB

the rust compiler assumes that references are valid, so this snippet contains UB!

LLVM encodes and exploits assumptions like nonnull or noalias

` `

1 // BAD!
2 let reference: &u8 = unsafe {
3 let ptr = 0usize as *const u8;
4
5 &*ptr
6 };

` ` ` `

1 define internal fastcc void @str.RocStr.reallocate(
2 %str.RocStr* noalias nocapture nonnull %arg,
3 %str.RocStr* nocapture nonnull readonly align 8 %arg1,
4 i64 %arg2
5)

transmute

there are still checks! transmute errors when the size does not correspond

` `
e.g. bitcast a i64 into a f64 :` ` ` `

1 std::mem::transmute::<i64, f64>(42i64)

` `

1 error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
2 --> src/main.rs:2:12
3 |
4 2 | unsafe { std::mem::transmute::<i64, f32>(42i64) };
5 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6 |
7 = note: source type: `i64` (64 bits)
8 = note: target type: `f32` (32 bits)

transmute

Only 0b0000_0000 and 0b0000_0001 are valid bool bit patterns. This code has UB:

An if statement might be compiled into a jump table

The memory representation of rust values is explicitly undefined! Bitcasting is therefore very unsafe!

` `
Only some bit patterns are valid for a type. Creating an invalid bit pattern is UB!

` ` ` ` ` `

1 std::mem::transmute::<u8, bool>(2u8)

` `

1 const JMP_TABLE: *const u8 = [0x1000, 0x1100];
2
3 // this will fail horribly if `bool_value >= 2`
4 jmp JMP_TABLE[bool_value as usize];

So Rust is just as bad as C?
if memory safety can be broken, how is rust any better than C?

So far
rust is a systems language: it must provide unrestricted access

call code in different languages

exploit all capabilities of the OS/hardware

optimize

rust’s goals mean restricting access

unsafe is an escape hatch: great power, but the risk of introducing UB

Part II: common types and
examples

Raw Pointers

raw (mut or const) pointers can alias each other!

1 let mut x = 0;
2 let y = &mut x as *mut i32;
3 let z = 12;
4
5 unsafe {
6 std::ptr::write(y, z);
7 assert_eq!(std::ptr::read(y), 12);
8 }

NonNull
A *mut T that is guaranteed to not be NULL` `

1 use std::ptr::NonNull;
2
3 let mut x = 0u32;
4 let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
5
6 // NEVER DO THIS!!! This is undefined behavior. ⚠️
7 let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };

MaybeUninit

Useful when working with pointers (which may point to uninitialized data)

Working with uninitialized memory

1 use std::mem::MaybeUninit;
2
3 let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️

1 pub const unsafe fn swap<T>(x: *mut T, y: *mut T) {
2 // Give ourselves some scratch space to work with.
3 // We do not have to worry about drops: `MaybeUninit` does nothing when dropped.
4 let mut tmp = MaybeUninit::<T>::uninit();
5
6 // Perform the swap
7 // SAFETY: the caller must guarantee that `x` and `y` are
8 // valid for writes and properly aligned. `tmp` cannot be
9 // overlapping either `x` or `y` because `tmp` was just allocated
10 // on the stack as a separate allocated object.
11 unsafe {
12 std::ptr::copy_nonoverlapping(x, tmp.as_mut_ptr(), 1);
13 std::ptr::copy(y, x, 1); // `x` and `y` may overlap
14 std::ptr::copy_nonoverlapping(tmp.as_ptr(), y, 1);
15 }
16 }

CString
A null-terminated string type

1 use std::ffi::CString;
2 use libc::strlen;
3
4 fn main() {
5 let cstring = CString::new("Hello, world!").expect("no NULL bytes");
6
7 // pub unsafe extern "C" fn strlen(cs: *const c_char) -> size_t
8 println!("{}", unsafe { strlen(cstring.as_ptr())});
9 }

Examples
interacting with other languages (FFI)

interacting with the OS/hardware

optimization

Using libc functions
1 // pub unsafe extern "C" fn getpid() -> pid_t
2
3 use libc;
4
5 println!("My pid is {}", unsafe { libc::getpid() });

Using libc functions
1 // pub fn id() -> u32
2
3 use std::process;
4
5 println!("My pid is {}", process::id());

Interacting with the OS
1 unsafe fn execve(&self, argv: &[*const c_char], envp: &[*const c_char]) -> c_int {
2 match self {
3 // ...
4
5 #[cfg(target_family = "windows")]
6 ExecutableFile::OnDisk(_, path) => {
7 let path_cstring = CString::new(path.to_str().unwrap()).unwrap();
8
9 libc::execve(path_cstring.as_ptr().cast(), argv.as_ptr(), envp.as_ptr())
10 }
11 }
12 }

Interacting with the Hardware
Using a SIMD intrinsic

1 #[target_feature(enable = "avx")]
2 unsafe fn vperilps(mut current: __m128, mask: (i32, i32, i32, i32)) -> __m128 {
3 let mask = _mm_set_epi32(mask.3, mask.2, mask.1, mask.0);
4
5 std::arch::asm!(
6 "vpermilps {a:y}, {a:y}, {m:y}",
7 a = inout(ymm_reg) current,
8 m = in(ymm_reg) mask,
9
10);
11
12 current
13 }

Example: Memory consumption of linked lists
1 enum LinkedList {
2 Nil,
3 Cons(u64, Box<LinkedList>),
4 }
5
6 use LinkedList::*;
7
8 impl LinkedList {
9 fn range(range: Range<u64>) -> Self {
10 let mut list = Nil;
11 for value in range.rev() {
12 list = Cons(value, Box::new(list));
13 }
14
15 list
16 }
17
18 fn sum(&self) -> u64 {
19 match self {
20 Nil => 0,
21 Cons(first, rest) => first + rest.sum(),
22 }
23 }
24 }

Example: Memory consumption of linked lists
1 enum LinkedList {
2 Nil,
3 Cons(u64, Box<LinkedList>),
4 }
5
6 // could be represented as
7
8 struct LinkedList {
9 tag: LinkedListTag,
10 payload: LinkedListUnion,
11 }
12
13 enum LinkedListTag {
14 Nil = 0,
15 Cons = 1,
16 }
17
18 union LinkedListUnion {
19 nil: (),
20 cons: (u64, std::mem::ManuallyDrop<Box<LinkedList>>),
21 }

Example: Memory consumption of linked lists
what is the memory layout of this type?

field order

alignment

size

1 struct LinkedList {
2 tag: LinkedListTag,
3 payload: LinkedListUnion,
4 }
5
6 enum LinkedListTag {
7 Nil = 0,
8 Cons = 1,
9 }
10
11 union LinkedListUnion {
12 nil: (),
13 cons: (u64, std::mem::ManuallyDrop<Box<LinkedList>>),
14 }

Example: Memory consumption of linked lists
1 struct LinkedList(*const Node);
2
3 struct Node {
4 first: u64,
5 rest: LinkedList,
6 }
7
8 impl LinkedList {
9 fn range(range: Range<u64>) -> Self {
10 let mut list = LinkedList(std::ptr::null());
11 for value in range.rev() {
12 let node = Node { first: value, rest: list };
13 list = LinkedList(Box::into_raw(Box::new(node)));
14 }
15
16 list
17 }
18
19 fn sum(&self) -> u64 {
20 if self.0.is_null() { 0 } else {
21 let node = unsafe { std::ptr::read(self.0) };
22 node.first + node.rest.sum()
23 }
24 }
25 }

Example: Memory consumption of linked lists

Question: what is the memory layout of LinkedList. What is the size?

1 struct LinkedList(Option<Box<Node>>);
2
3 struct Node {
4 first: u64,
5 rest: LinkedList,
6 }
7
8 impl LinkedList {
9 fn range(range: Range<u64>) -> Self {
10 todo!()
11 }
12
13 fn sum(&self) -> u64 {
14 todo!()
15 }
16 }

Exercises
Implement functions for the pointer-based LinkedList

Implement a process forwarding program using execve

Implement a custom Result variant that matches a specific memory layout

` `

` `

` `

Summary
rust is a systems language: it must provide unrestricted access

call code in different languages

exploit all capabilities of the OS/hardware

optimize

rust’s goals mean restricting access

unsafe is an escape hatch: great power, but the risk of introducing UB

common types in unsafe code: *const T , *mut T , CString , MaybeUninit

examples of unsafe

using the execve syscall wrapper

using custom simd instructions

optimizing a linked list with pointer trickery

` ` ` ` ` ` ` `

` `

END

