Rust programming

Module G: FFI

Learning objectives

= Working with C from Rust and vice versa
= be familiar with the C representation

= pbe familiar with the C calling convention
= Work with "cargo bindgen”

= Make nice rust APIs around C libraries

= Create python extensions

Content overview

= Calling convention and ABI
= using C from Rust
= using Rust from C
" ‘cargo bindgen’

= PyO3

Why do languages talk with each other?

= You get an ecosystem for free

= The other language has capabilities (performance, hardware access) that you don’t

Tight langugage coupling

Many languages can use code written in other languages

= JVM: Java, Scala, and Kotlin
= BEAM VM: Erlang and Elixir
= Bare Metal: Zig, D and Nim can import C code

The compiler checks names and types.

Rust cannot "just” import C code

» |diomatic C is not idiomatic Rust
m C code cannot provide the guarantees that Rust expects

® maintaining half of a C compiler is not fun

Hence, a much looser coupling:

®m generate assembly that is similar to what C generates

= have the linker stitch everything together

what if we kissed

- =

3.2.3 Parameter Passing

After the argument values have been computed, they are placed either in regis-
ters or pushed on the stack. The way how values are passed is described in the
following sections.

Definitions We first define a number of classes to classify arguments. The
classes are corresponding to AMD64 register classes and defined as:

INTEGER This class consists of integral types that fit into one of the general
purpose registers,

SSE The class consists of types that fit into a vector register.

SSEUP The class consists of types that fit into a vector register and can be passed
and returned in the upper bytes of it.

X87, X87UP These classes consists of types that will be returned via the x87
FPU.

COMPLEX_X87 This class consists of types that will be returned via the x87
FPU.

NO_CLASS This class is used as initializer in the algorithms. It will be used for
padding and empty structures and unions.

MEMORY This class consists of types that will be passed and returned in mem-
ory via the stack.
Classification The size of each argument gets rounded up to cightbylcs

The basic types are assigned their natural classes:

e Arguments of types (signed and unsigned) _Bool, char, short, int,
long, long long, and pointers are in the INTEGER class.

e Arguments of types float, double, _Decimal32, Decimalé4 and
__m6&4 are in class SSE.

~ s

and'wawere both C

Rust & C disagree

= different calling conventions

= different memory layout

|dea: forward-declare the signature

In rust, this function can now be used like any other

extern "C" {
fn my_c_function(x: 132) -> bool;

}

The linker will stitch this declaration together with the definition

How to call a function

extern "C" {
fn my_c_function(x: i32) -> bool;

pub fn main () {
unsafe { my_c_function(42) };

generates this code for ‘main :

example: :main:

push
mov
call
pop
ret

rax
edi,0x2a

80b0 <example::my_c_function>
rax

Space vs Speed

We can compile this code in two ways

1 fn foo(vec: Vec<u8>) -> usize { vec.len() }

3 fn main() { foo(vec![]); }

Using 3 registers:

1 fn foo(ptr: *const u8, len: usize, cap: usize) -> usize {
len

or using one register and indirection:

1 fn foo(vec: *const (usize, usize, usize)) -> usize {
vec.1

Calling convention

= Rust and C make different choices on by-value vs. by-reference
" “extern "C" forces rustto use the C calling convention

= The C calling convention is the lingua franca of calling between languages

C types != Rust types

= for some types, Rust and C agree on the representation
extern "C" {

fn is_even(x: i32) -> bool;

fn is_null(ptr: *const u32) -> bool;

#[repr(u8)]
enum Color { R, G, B}

extern "C" {

fn circle _with_me(c: Color) -> Color;

C types != Rust types

= for others, we must explicitly pick the representation

#lrepr(C)]
struct Point { x: f32, y: f32 }

extern "C" {

fn h(p: Point) -> bool;
}

#[repr(transparent)]
struct Wrapper<T>(T);

extern "C" {

fn h(w: Wrapper<u64>) -> bool;

C types != Rust types

= for others, we must explicitly pick the representation

#lrepr(C)]
union U { int: 164, float: f64 }

extern "C" {

fn iCu: U) -> bool;

C types != Rust types

= many types just don't work:
= enums like "Result or Option-
= owned collections like "String and Vec<T>

= fat pointers like "&str™ or "&6[T]"

these need special, manual treatment

‘cargo-bindgen

Generates rust APl bindings based on C header files

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

extern "C" {

pub fn crypto_stream_salsa20_tweet_xor(

argl:
arg2:
arg3:
argh:
arg5:

*mut ::std::os::raw::c_uchar,
xconst ::std::os::raw::c_uchar,
::std::os::raw::c_ulonglong,
*const ::std::os::raw::c_uchar,
xconst ::std::o0s::raw::c_uchar,

) -> ::std::os::raw::c_int;

}

extern "C" {

pub fn crypto_verify 16_tweet(

argl:
arg2:

xconst ::std::os::raw::c_uchar,
*const ::std::os::raw::c_uchar,

) -> ::std::os::raw::c_int;

}

extern "C" {

pub fn crypto_verify_32_tweet(

argl:
arg2:

xconst ::std::os::raw::c_uchar,
xconst ::std::os::raw::c_uchar,

) -> ::std::os::raw::c_int;

So far

C and Rust don’t just work together, we must

= tell rust the name and type of extern functions
= force rust to use the C calling convention
= use only types that have a C-compatible representation

m ‘cargo-bindgen automates parts of this process

Using Rust from C

exposed functions look like this

#[no_mangle]
extern "C" fn sum(ptr: *const u64, len: usize) -> ub4 {
let slice = unsafe { std::slice::from_raw_parts(ptr, len) };

slice.iter().sum()

o U1 B W N

Compiling rust into a static library requires some extra setup in the Cargo.toml .

Using Rust from Python

S~ W N R

use pyo3::prelude::*;

/// Formats the sum of two numbers as string.

#[pyfunction]

fn sum_as_string(a: usize, b: usize) -> PyResult<String> {
Ok((a + b).to_string())

/// A Python module implemented in Rust. The name of this function must match

/// the “lib.name’ setting in the “Cargo.toml’, else Python will not be able to

/// import the module.

#[pymodule]

fn string_sum(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(sum_as_string, m)?)?;

0k(())

$ python
>>> import string_sum

>>> string_sum.sum_as_string(5, 20)
|25l

Demo

Optional demo: roc glue

END

Code example

fn main() {
println!("Hello world!");
}

fn main() {
println! ("Hello world!");

}

https://play.rust-lang.org/help

